GB 50017-2017 English PDF (GB50017-2017)
GB 50017-2017 English PDF (GB50017-2017)
Regular price
¥3,692.00 CNY
Regular price
Sale price
¥3,692.00 CNY
Unit price
/
per
Delivery: 3 seconds. Download true-PDF + Invoice.
Get QUOTATION in 1-minute: Click GB 50017-2017
Historical versions: GB 50017-2017
Preview True-PDF (Reload/Scroll if blank)
GB 50017-2017: Code for Design of Steel Structure
GB 50017-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
UDC
P GB 50017-2017
Standard for design of steel structures
ISSUED ON. DECEMBER 12, 2017
IMPLEMENTED ON. JULY 01, 2018
Issued by. Ministry of Housing and Urban-Rural Development of PRC;
General Administration of Quality Supervision Inspection and
Quarantine of PRC.
Table of Contents
Foreword ... 8
1 General provisions ... 13
2 Terms and symbols ... 14
2.1 Terms ... 14
2.2 Symbols ... 18
3 General requirements ... 24
3.1 General requirements... 24
3.2 Structural systems ... 27
3.3 Actions ... 28
3.4 Requirements of deformation for structures and members ... 30
3.5 Classification of sections ... 30
4 Material ... 33
4.1 Structural steel designations and standards ... 33
4.2 Connections and fasteners materials and standards ... 33
4.3 Selection of materials ... 35
4.4 Design strength and parameters ... 37
5 Structural analysis and stability design ... 47
5.1 General requirements... 47
5.2 Initial imperfections... 49
5.3 First-order elastic analysis and design ... 52
5.4 Second-order P-Δ elastic analysis and design ... 52
5.5 Direct analysis method of design ... 53
6 Flexural members ... 57
6.1 Shear and flexural strength ... 57
6.2 Flexural-torsional stability of beams ... 60
6.3 Plate stability ... 63
6.4 Design of beams considering post-buckling strength of webs ... 71
6.5 Strengthening of openings ... 75
6.6 Detailing ... 76
7 Axially loaded members ... 78
7.1 Strength calculation of cross-sections ... 78
7.2 Stability calculation of members under axial compression ... 79
7.3 Local stability and post-buckling strength of solid-web members under axial
compression ... 93
7.4 Effective length and allowable slenderness ratio of members under axial
compression ... 97
7.5 Bracing of members under axial compression ... 103
7.6 Special cases of trusses and tower members ... 105
8 Members under combined axial force and bending ... 108
8.1 Strength calculations of cross-sections ... 108
8.2 Stability calculation of members ... 111
8.3 Effective length of frame columns ... 118
8.4 Local stability and post-buckling strength of beam-columns ... 125
8.5 Truss members subjected to second-order moments ... 128
9 Stiffened steel shear walls ... 130
9.1 General requirements... 130
9.2 Design of stiffened steel shear walls ... 130
9.3 Detailing ... 133
10 Plastic design and provisions for design using moment redistribution ... 135
10.1 General requirements... 135
10.2 Provisions for design using moment redistribution ... 136
10.3 Calculation of member strength and stability ... 137
10.4 Slenderness limitations and detailing ... 138
11 Connections ... 141
11.1 General requirements ... 141
11.2 Calculation of welded connections ... 143
11.3 Detailing requirements of welded connections ... 148
11.4 Calculation of fasteners ... 153
11.5 Detailing requirements of fasteners ... 158
11.6 Pin connections ... 161
11.7 Details of flanged connections for steel tubes ... 164
12 Joints ... 165
12.1 General requirements... 165
12.2 Connecting plate joints ... 165
12.3 Beam-column joints ... 170
12.4 Cast steel joints ... 175
12.5 Pre-stressed cable joints ... 176
12.6 Bearings ... 176
12.7 Column footing ... 179
13 Steel tubular joints ... 186
13.1 General requirements... 186
13.2 Detail requirements ... 187
13.3 Design of unstiffened and stiffened CHS joints ... 192
13.4 Design of unstiffened and stiffened RHS joints ... 212
14 Composite steel and concrete beams ... 224
14.1 General requirements... 224
14.2 Design of composite beams ... 227
14.3 Calculation of shear connections ... 231
14.4 Calculation of deflection ... 234
14.5 Calculation of concrete crack width at hogging moment region ... 236
14.6 Calculation of longitudinal shear ... 237
14.7 Detailing provisions ... 239
15 Concrete-filled steel tubular columns and joints ... 242
15.1 General requirements... 242
15.2 Rectangular concrete-filled steel tubular members ... 242
15.3 Round concrete-filled steel tubular members ... 243
15.4 Beam-column joints ... 243
16 Design for fatigue and brittle fracture ... 245
16.1 General requirements... 245
16.2 Design for fatigue ... 245
16.3 Detailing requirements ... 252
16.4 Prevention of brittle fracture ... 256
17 Seismic design of steel structural members ... 258
17.1 General requirements... 258
17.2 Design requirements ... 262
17.3 Connections and details ... 277
18 Protection of steel structures ... 286
18.1 Fire-resistance design ... 286
18.2 Corrosion prevention design ... 286
18.3 Temperature insulation ... 289
Appendix A Common structural systems ... 290
Appendix B Limits of deflection for structures and flexural members ... 293
Appendix C Overall stability of beams ... 298
Appendix D Stability coefficients of members under axial compression ... 304
Appendix E Effective length factors of columns ... 309
Appendix F Elastic buckling stresses for stiffened steel shear walls ... 318
Appendix G Buckling calculation of truss connecting plate under diagonal
compression... 327
Appendix H Classifications of unstiffened tubular joints in terms of rigidity 329
Appendix J Fatigue design of composite steel and concrete beams ... 332
Appendix K Design values for compressive and shear strength of composite
round concrete-filled steel tubes ... 334
Explanation of wording in this standard ... 343
List of quoted standards ... 344
Standard for design of steel structures
1 General provisions
1.0.1 To implement the national technical and economic policies in the design
of steel structures, to achieve advanced technology, safety and application,
economic rationality, and quality assurance, this standard is hereby formulated.
1.0.2 This standard applies to the design of steel structures for industrial and civil
buildings as well as general structures.
1.0.3 In addition to complying with this standard, the design of steel structure
shall also comply with the provisions of relevant national standards.
2 Terms and symbols
2.1 Terms
2.1.1 Brittle fracture
The sudden fracture of structure or member which does not exhibit a plastic
deformation of alarming nature under the tensile stress.
2.1.2 First-order elastic analysis
The establishment of balancing conditions in accordance with the undeformed
structure as well as the analysis of structure’s internal force and displacement
by elastic phases, which does not consider the impacts of the geometric
nonlinearity on the structure’s internal force and deformation.
2.1.3 Second-order P-Δ elastic analysis
The establishment of balancing conditions in accordance with the displaced
structure as well as the analysis of structure’s internal force and displacement
by elastic phases, which only considers the impacts of the initial overall defect
of the structure and the geometric nonlinearity on the structure’s internal force
and deformation.
2.1.4 direct analysis method of design
The design method of using the overall structural system as an object to
perform the second-order nonlinear analysis, which directly considers the
factors of initial geometric defects, residual stress, material nonlinearity, joint
stiffness and so on th...
Get QUOTATION in 1-minute: Click GB 50017-2017
Historical versions: GB 50017-2017
Preview True-PDF (Reload/Scroll if blank)
GB 50017-2017: Code for Design of Steel Structure
GB 50017-2017
GB
NATIONAL STANDARD OF THE
PEOPLE’S REPUBLIC OF CHINA
UDC
P GB 50017-2017
Standard for design of steel structures
ISSUED ON. DECEMBER 12, 2017
IMPLEMENTED ON. JULY 01, 2018
Issued by. Ministry of Housing and Urban-Rural Development of PRC;
General Administration of Quality Supervision Inspection and
Quarantine of PRC.
Table of Contents
Foreword ... 8
1 General provisions ... 13
2 Terms and symbols ... 14
2.1 Terms ... 14
2.2 Symbols ... 18
3 General requirements ... 24
3.1 General requirements... 24
3.2 Structural systems ... 27
3.3 Actions ... 28
3.4 Requirements of deformation for structures and members ... 30
3.5 Classification of sections ... 30
4 Material ... 33
4.1 Structural steel designations and standards ... 33
4.2 Connections and fasteners materials and standards ... 33
4.3 Selection of materials ... 35
4.4 Design strength and parameters ... 37
5 Structural analysis and stability design ... 47
5.1 General requirements... 47
5.2 Initial imperfections... 49
5.3 First-order elastic analysis and design ... 52
5.4 Second-order P-Δ elastic analysis and design ... 52
5.5 Direct analysis method of design ... 53
6 Flexural members ... 57
6.1 Shear and flexural strength ... 57
6.2 Flexural-torsional stability of beams ... 60
6.3 Plate stability ... 63
6.4 Design of beams considering post-buckling strength of webs ... 71
6.5 Strengthening of openings ... 75
6.6 Detailing ... 76
7 Axially loaded members ... 78
7.1 Strength calculation of cross-sections ... 78
7.2 Stability calculation of members under axial compression ... 79
7.3 Local stability and post-buckling strength of solid-web members under axial
compression ... 93
7.4 Effective length and allowable slenderness ratio of members under axial
compression ... 97
7.5 Bracing of members under axial compression ... 103
7.6 Special cases of trusses and tower members ... 105
8 Members under combined axial force and bending ... 108
8.1 Strength calculations of cross-sections ... 108
8.2 Stability calculation of members ... 111
8.3 Effective length of frame columns ... 118
8.4 Local stability and post-buckling strength of beam-columns ... 125
8.5 Truss members subjected to second-order moments ... 128
9 Stiffened steel shear walls ... 130
9.1 General requirements... 130
9.2 Design of stiffened steel shear walls ... 130
9.3 Detailing ... 133
10 Plastic design and provisions for design using moment redistribution ... 135
10.1 General requirements... 135
10.2 Provisions for design using moment redistribution ... 136
10.3 Calculation of member strength and stability ... 137
10.4 Slenderness limitations and detailing ... 138
11 Connections ... 141
11.1 General requirements ... 141
11.2 Calculation of welded connections ... 143
11.3 Detailing requirements of welded connections ... 148
11.4 Calculation of fasteners ... 153
11.5 Detailing requirements of fasteners ... 158
11.6 Pin connections ... 161
11.7 Details of flanged connections for steel tubes ... 164
12 Joints ... 165
12.1 General requirements... 165
12.2 Connecting plate joints ... 165
12.3 Beam-column joints ... 170
12.4 Cast steel joints ... 175
12.5 Pre-stressed cable joints ... 176
12.6 Bearings ... 176
12.7 Column footing ... 179
13 Steel tubular joints ... 186
13.1 General requirements... 186
13.2 Detail requirements ... 187
13.3 Design of unstiffened and stiffened CHS joints ... 192
13.4 Design of unstiffened and stiffened RHS joints ... 212
14 Composite steel and concrete beams ... 224
14.1 General requirements... 224
14.2 Design of composite beams ... 227
14.3 Calculation of shear connections ... 231
14.4 Calculation of deflection ... 234
14.5 Calculation of concrete crack width at hogging moment region ... 236
14.6 Calculation of longitudinal shear ... 237
14.7 Detailing provisions ... 239
15 Concrete-filled steel tubular columns and joints ... 242
15.1 General requirements... 242
15.2 Rectangular concrete-filled steel tubular members ... 242
15.3 Round concrete-filled steel tubular members ... 243
15.4 Beam-column joints ... 243
16 Design for fatigue and brittle fracture ... 245
16.1 General requirements... 245
16.2 Design for fatigue ... 245
16.3 Detailing requirements ... 252
16.4 Prevention of brittle fracture ... 256
17 Seismic design of steel structural members ... 258
17.1 General requirements... 258
17.2 Design requirements ... 262
17.3 Connections and details ... 277
18 Protection of steel structures ... 286
18.1 Fire-resistance design ... 286
18.2 Corrosion prevention design ... 286
18.3 Temperature insulation ... 289
Appendix A Common structural systems ... 290
Appendix B Limits of deflection for structures and flexural members ... 293
Appendix C Overall stability of beams ... 298
Appendix D Stability coefficients of members under axial compression ... 304
Appendix E Effective length factors of columns ... 309
Appendix F Elastic buckling stresses for stiffened steel shear walls ... 318
Appendix G Buckling calculation of truss connecting plate under diagonal
compression... 327
Appendix H Classifications of unstiffened tubular joints in terms of rigidity 329
Appendix J Fatigue design of composite steel and concrete beams ... 332
Appendix K Design values for compressive and shear strength of composite
round concrete-filled steel tubes ... 334
Explanation of wording in this standard ... 343
List of quoted standards ... 344
Standard for design of steel structures
1 General provisions
1.0.1 To implement the national technical and economic policies in the design
of steel structures, to achieve advanced technology, safety and application,
economic rationality, and quality assurance, this standard is hereby formulated.
1.0.2 This standard applies to the design of steel structures for industrial and civil
buildings as well as general structures.
1.0.3 In addition to complying with this standard, the design of steel structure
shall also comply with the provisions of relevant national standards.
2 Terms and symbols
2.1 Terms
2.1.1 Brittle fracture
The sudden fracture of structure or member which does not exhibit a plastic
deformation of alarming nature under the tensile stress.
2.1.2 First-order elastic analysis
The establishment of balancing conditions in accordance with the undeformed
structure as well as the analysis of structure’s internal force and displacement
by elastic phases, which does not consider the impacts of the geometric
nonlinearity on the structure’s internal force and deformation.
2.1.3 Second-order P-Δ elastic analysis
The establishment of balancing conditions in accordance with the displaced
structure as well as the analysis of structure’s internal force and displacement
by elastic phases, which only considers the impacts of the initial overall defect
of the structure and the geometric nonlinearity on the structure’s internal force
and deformation.
2.1.4 direct analysis method of design
The design method of using the overall structural system as an object to
perform the second-order nonlinear analysis, which directly considers the
factors of initial geometric defects, residual stress, material nonlinearity, joint
stiffness and so on th...